

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0338 of 28 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product JORDAHL anchor channel JTA and JXA Product family Anchor channels to which the construction product belongs Manufacturer JORDAHL GmbH Nobelstraße 51 12057 Berlin DEUTSCHLAND Manufacturing plant JORDAHL Herstellwerke This European Technical Assessment 48 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330008-03-0601, Edition 03/2021 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-09/0338 issued on 18 June 2018

European Technical Assessment ETA-09/0338 English translation prepared by DIBt

Page 2 of 48 | 28 June 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 48 | 28 June 2021

Specific Part

1 Technical description of the product

The JORDAHL anchor channel JTA and JXA is system consisting of C-shaped channel profile steel and stainless steel and at least two metal anchors non-detachably fixed on the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Channel bolts JORDAHL T-bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors, connection and channel lips	See Annex C1 to C3
- Resistance to steel failure of channel bolt	See Annex C6
 Resistance to steel failure by exceeding the bending strength of the channel 	See Annex A9, A10 and C4 to C5
- Maximum installation torque	See Annex B5 and B6
- Resistance to pull-out failure of the anchor and to concrete cone failure	See Annex B3, B4 and C7 to C9
- Minimum edge distance, spacing and member thickness	See Annex A9, A10, B3 and B4
- Characteristic edge distance and spacing to avoid splitting of concrete under load	See Annex C7 to C9
- Resistance to blow-out failure – bearing area of anchor head	See Annex A7 and A8

European Technical Assessment ETA-09/0338

Page 4 of 48 | 28 June 2021

English translation prepared by DIBt

Characteristic resistance under shear load (static and quasi-static loading)	
- Resistance to steel failure of channel bolt	See Annex C16
 Resistance to steel failure of channel lips, connection and anchor (shear load perpendicular to longitudinal axis of channel) 	See Annex C11 to C13
 Resistance to steel failure of channel lips, anchor and connection (shear load in direction of longitudinal axis of channel) 	See Annex C12
- Resistance to concrete failure	See Annex C14 and C15
Characteristic resistance under combined tension and shear load (static and quasi-static load)	See Annex C18
Characteristic resistances under cyclic fatigue tension load	See Annex C22 and C23
Displacements (static and quasi-static load)	See Annex C10 and C17

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C19 to C21

3.3 Other essential characteristics

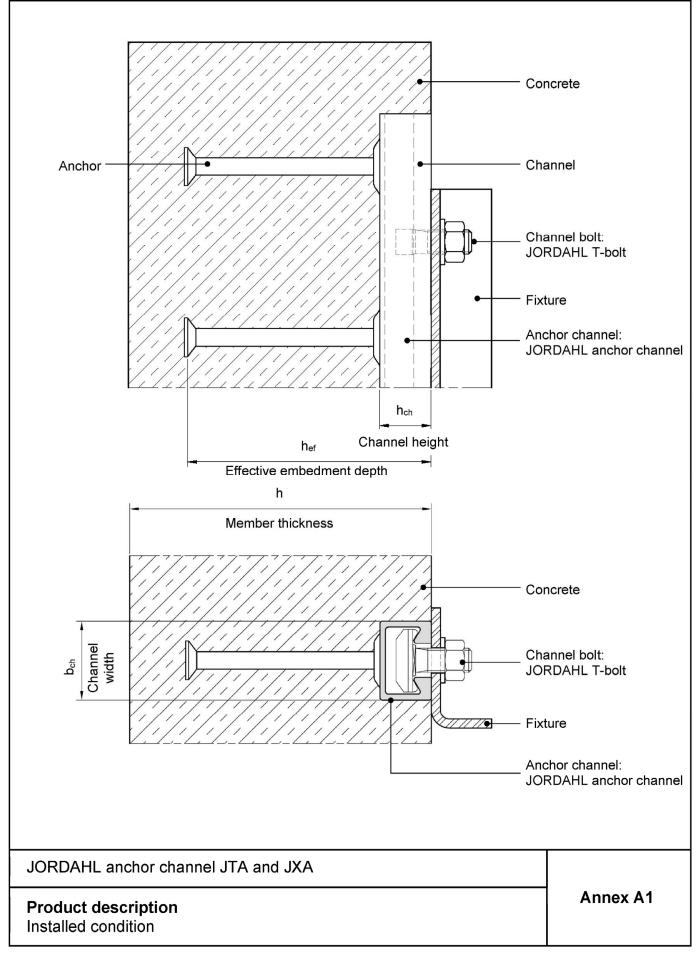
Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

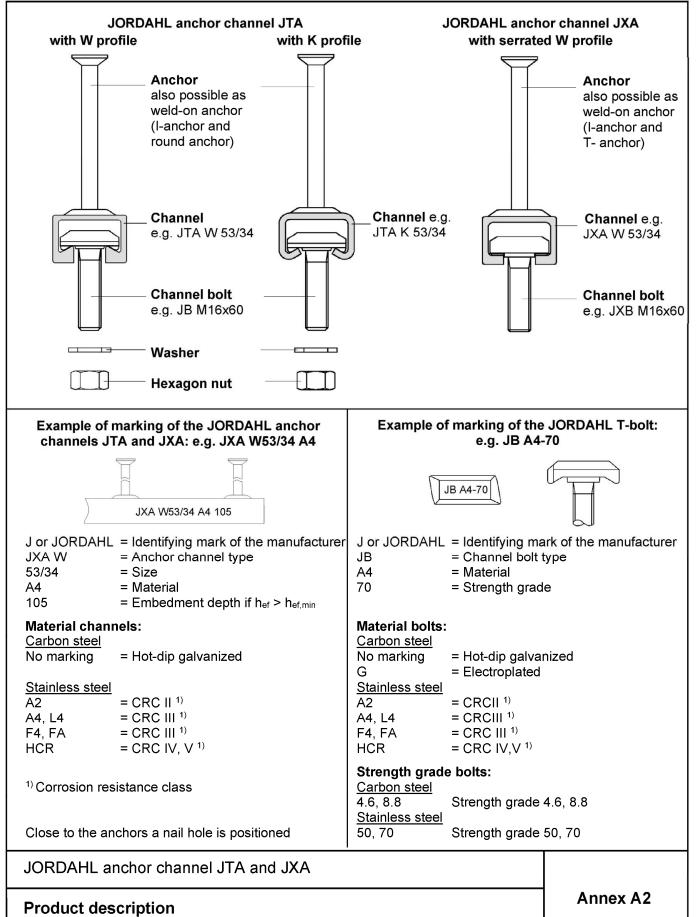
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 28 June 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller Page 5 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt



Page 6 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

Marking and materials

Page 7 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

		Intend	ed use	
		1		2
ltem no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions		may also be used bject to internal usual humidity
		Mate	rials	
			_	n steel
1	Channel profile	Carbon steel hot-dip galvanized \ge 55 μ m ⁴⁾	Stainles	<u>ized ≥ 55 μm ⁴⁾</u> s steel ⁵⁾ C II
		Carbon steel	Carbo	n steel ized ≥ 55 μm ⁴⁾
2	Anchor	hot-dip galvanized $\geq 55~\mu m$ $^{4)}$		s steel ⁵⁾ C II
3	Channel bolt with shaft and thread according to	Carbon steel strength grade 4.6, 8.8	strength gra hot-dip galvan	n steel ade 4.6, 8.8 ized ≥ 50 µm ³⁾
5	EN ISO 4018: 2011	electroplated $\ge 5 \ \mu m^{2}$	CR	s steel ⁵⁾ C II rade 50, 70
	Washer according to		Carbo	n steel
4	EN ISO 7089:2000 and EN ISO 7093-1:2000, production class A, 200 HV	Carbon steel electroplated \ge 5 μ m ²⁾	Stainles	ized ≥ 50 µm ³⁾ s steel ⁵⁾ A2, A3, A4
	Hexagonal nut	Carbon steel	strength g	n steel grade 5, 8 ized ≥ 50 µm ³⁾
5	EN ISO 4032:2012	strength grade 5, 8 electroplated $\ge 5 \ \mu m^{2}$	Stainles steel type	s steel ⁵⁾ A2, A3, A4
EI H (H (N 1992-1-1:2004+AC:201 lectroplated according to E ot-dip galvanized accordin ot-dip galvanized on the ba		er according to thickness ≥ 55 μm	
)R	DAHL anchor channe	LITA and IXA		

Product description Materials and intended use

Page 8 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

			Intended use	
		3	4	5
Item no.	Specification	For CRC III according to EN 1993-1-4:2006	For CRC IV according to EN 1993-1-4:2006	For CRC V according to EN 1993-1-4:2006
			Materials	
1	Channel profile	Stainless steel CRC III	Stainless steel CRC IV	Stainless steel CRC V
2	Anchor	Stainless steel CRC III	Stainless steel CRC IV	Stainless steel
2	Anchor	Carbon steel ¹⁾	Carbon steel ¹⁾	CRC V
3	Channel bolt with shaft and thread according to EN ISO 4018: 2011	Stainless steel CRC III strength grade 50, 70	Stainless steel CRC IV strength grade 50, 70	Stainless steel CRC V strength grade 50, 70
4	Washer according to EN ISO 7089:2000 and EN ISO 7093-1:2000, production class A, 200 HV	Stainless steel CRC III steel type A4	Stainless steel CRC IV steel type A5	Stainless steel CRC V steel type A8
5	Hexagonal nut EN ISO 4032:2012	Stainless steel CRC III steel type A4 strength grade 70, 80	Stainless steel CRC IV steel type A5 strength grade 70, 80	Stainless steel CRC V steel type A8 strength grade 70, 80
E	arbon steel only for welder EN 1992-1-1:2004+AC:201 lectroplated according to E lot-dip galvanized accordin lot-dip galvanized on the b tainless steel anchors only	0 (c _{nom} ≥ 50 mm) EN ISO 4042:2018 Ig to EN ISO 10684:2004 asis of EN ISO 1461:2009	+ AC:2009 9, but coating thickness ≥ :	55 µm
R	DAHL anchor channe	I JTA and JXA		

Materials and intended use

Table A2: Dimensions of profile – carbon steel

Anchor	abannal	Fi a	erial			Dimensi	on [mm]			[mm⁴]
Anchor	channel	Fig.	Materia	bch	h _{ch}	t ch,b	t _{ch,l}	dch	f	ly
	K 28/15	2		28,00	15,25	2,25	2,25	12,00	2,25	4060
	K 38/17	2		38,00	17,50	3,00	3,00	18,00	3,00	8547
	K 40/25	2		40,00	25,00	2,75	2,75	18,00	5,60	20570
	K 50/30	2		50,00	30,00	3,00	3,00	22,00	7,39	41827
	K 53/34	2		53,50	33,00	4,50	4,50	22,00	7,90	72079
JTA	K 72/48	2	steel	72,00	49,00	6,00	6,00	33,00	9,90	293579
	W 40/22 W 40+	1	on st	39,50	23,00	2,60	2,40	18,00	6,00	20029
	W 50/30 W 50+	1	Carbon	49,00	30,00	3,20	2,75	22,50	7,85	52896
	W 53/34	1		52,50	33,50	4,10	4,00	22,50	10,50	93262
	W 55/42	1		54,50	42,00	5,00	5,00	26,00	12,90	187464
	W 72/48	1		72,00	48,50	4,50	5,00	33,00	15,50	349721
	W 38/23	3		38,00	23,00	3,50	3,00	18,00	4,00	20953
JXA	W 53/34	3		52,50	34,00	4,00	4,00	22,50	6,00	92910

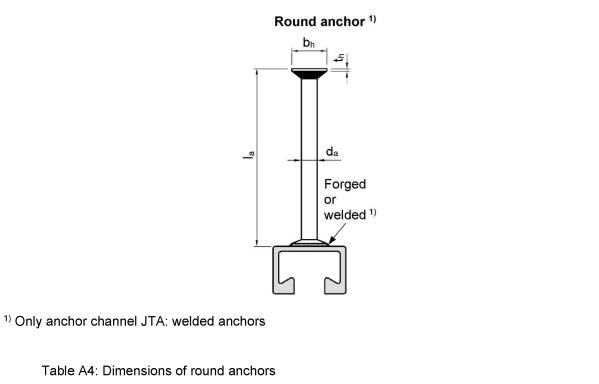
JORDAHL anchor channel JTA and JXA

Product description

Types of channels – carbon steel

A			erial			Dimensi	on [mm]			[mm⁴]
Ancho	or channel	Fig. ¹⁾	Material	b _{ch}	h _{ch}	t ch,b	t ch,I	d _{ch}	f	ly
	K 28/15	2		28,00	15,25	2,25	2,25	12,00	2,25	4060
	K 38/17	2		38,00	17,50	3,00	3,00	18,00	3,00	8547
	K 40/25	2		39,50	25,00	2,50	2,50	18,00	5,40	19097
	K 50/30	2		50,00	30,00	3,00	3,00	22,00	7,39	41827
	K 53/34	2	steel	53,50	33,00	4,50	4,50	22,00	7,90	72079
JTA	K 72/48	2	less	72,00	49,00	6,00	6,00	33,00	9,90	29357
	W 40/22 W 40+	1	Stainless	39,50	23,00	2,60	2,40	18,00	6,00	20029
	W 50/30 W 50+	1		49,00	30,00	3,20	2,75	22,50	7,85	52896
	W 53/34	1		52,50	33,50	4,10	4,00	22,50	10,50	93262
	W 72/48	1		72,00	48,50	4,50	5,00	33,00	15,50	34972

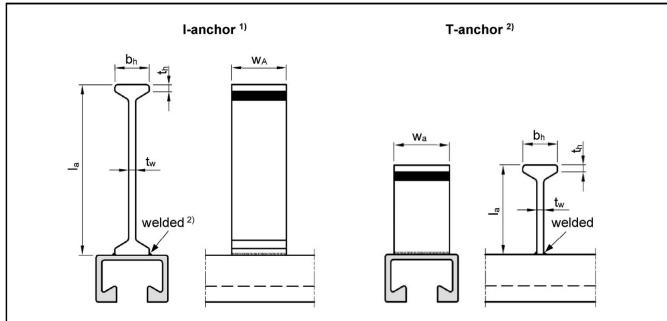
¹⁾ Fig. according to Annex A5


JORDAHL anchor channel JTA and JXA

Product description Types of channels – stainless steel

Page 11 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt


An	chor channel	Туре	da	dհ	th	Ah	I _{a,min}
	_		[mm]	[mm]	[mm]	[mm ²]	[mm]
	K 28/15		7,0	12,0	2,0	74,6	31,8
	W 40/22, K 40/25		9 E	15.0	2.0	120.0	56,0
	W 40+		8,5	15,0	2,0	120,0	70,0
	K 38/17		0.0	17.0	2.0	102.4	61,5
	W 40/22, K 40/25		9,0	17,0	3,0	163,4	57,0
	W 50/30, K 50/30		9,0	17,5	3,0	176,9	67,0
JTA	W 50+		10,0	19,5	3,0	220,1	79,0
	W 40+	R	10.9	10.0	3.0	101.0	71,0
	W 50/30, K 50/30		10,8	19,0	3,0	191,9	67,0
	W 53/34, K 53/34		11,5	23,5	3,0	329,9	124,5
	W 55/42		15,5	28,0	3,5	427,1	136,5
	W 72/48, K 72/48		15,5	31,0	3,5	566,1	133,5
	W 38/23		10,0	19,5	3,0	220,1	79,0
JXA	W 53/34		11,5	23,5	3,0	329,9	124,5

JORDAHL anchor channel JTA and JXA

Product description

Types of anchors – round anchors

¹⁾ Only anchor channel JTA: different welding and anchor orientation possible, refer to Annex A9 ²⁾ Only anchor channel JXA

Table A5: Dimensions of I-anchors and T-anchors

An	chor channel	Туре	Wa	bh	tw	th	Ah	l _{a,min}
			[mm]	[mm]	[mm]	[mm]	[mm ²]	[mm]
	K 28/15, K 38/17	l 60	10	18,0	5.0	3,3	130	62
	W40/22, K 40/25	100	12	10,0	5,0	3,5	234	62
	W 50/30, K 50/30	l 69	18	18,0	5,0	3,5	234	69
	W 40+		20				220	128
	W 50+	l 128	25	17,0	6,0	5,0	275	128
JTA	W 53/34, K 53/34		26				286	128
	W 40+		20				258	140
	W 50+	l 140	25	20.0	7 1	6.0	322	140
	W 55/42	1 140	32	20,0	7,1	6,0	448	140
	W 72/48, K 72/48		40				516	140
	W 38/23	1 4 0 0	20				220	128
17.4	W 53/34	l 128	40	17.0	6.0	FO	440	128
JXA	W 38/23	T 400	20	17,0	6,0	5,0	220	36
	W 53/34	T 128	40				440	47

JORDAHL anchor channel JTA and JXA

Product description

Types of anchors – I-anchors and T-anchors

Page 13 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

Roun	ig. 1 Id ancho orged	or		S		S X	Fig. 2 Round anchor welded
I-a w	ig. 3 anchor elded			iin 1			Fig. 4 T-anchor welded
	Table /	A6: Anchor	positioning	(JIA W and			
				spacing	End spacing	Min. channel length	,
	A	A6: Anchor Achor annel				Min. channel length	
	A	nchor	Anchor Smin	spacing	End spacing		
	A	nchor	Anchor Smin	spacing Smax	End spacing x	min I	
	A	nchor annel K 28/15	Anchor Smin	spacing S _{max}	End spacing x [mm]	min I [mm]	
	Aıch	K 28/15 K 38/17 K 40/25 W 40/22 W 40+ K 50/30 W 50/30	Anchor s _{min} [m 50	spacing s _{max} m] 200	End spacing x [mm] 25	min I [mm] 100	
	Aıch	K 28/15 K 38/17 K 40/25 W 40/22 W 40+ K 50/30 W 50/30 W 50+ K 53/34	Anchor s _{min} 50 50	spacing Smax m] 200 250	End spacing x [mm] 25 25	min I [mm] 100 100	

JORDAHL anchor channel JTA and JXA

Product description

Anchor positioning and channel length (JTA W and JTA K)

Anchor channel Smin Smax X Min I Image: Ima	channel Smin Smax X min I [mm] [mm] [mm] JXA W 38/23 50 250 25 100	channel Smin Smax X min I [mm] [mm] [mm] JXA W 38/23 50 250 25 100	channel Smin Smax X min I [mm] [mm] [mm] JXA W 38/23 50 250 25 100	channel Smin Smax X min I [mm] [mm] [mm] JXA W 38/23 50 250 25 100	channel Smin Smax X min I [mm] [mm] [mm] [mm] JXA W 38/23 50 250 25 100	Α		Anchor	spacing	End spacing	Min. channel length
JXA W 38/23 50 250 25 100	JXA W 38/23 50 250 25 100	JXA W 38/23 50 250 25 100	JXA W 38/23 50 250 25 100	JXA W 38/23 50 250 25 100	JXA W 38/23 50 250 25 100	ch	nchor nannel	Smin	Smax	x	min I
JXA	JXA	JXA	JXA	JXA	JXA			[n	nm]	[mm]	[mm]
JXA W 53/34 80 250 35 150	JXA W 53/34 80 250 35 150	JXA W 53/34 80 250 35 150	JXA W 53/34 80 250 35 150	JXA W 53/34 80 250 35 150	JXA W 53/34 80 250 35 150		W 38/23	50	250	25	100
						JXA	W 53/34	80	250	35	150

JORDAHL anchor channel JTA and JXA

Product description Anchor positioning and channel length (JXA)

Anchor channel K 28/1 K 38/1 K 38/1 K 40/2 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/4 W 55/4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Channel bolt JD JD/JUD JH/JUH JC JKC JB JB	b1 11,2 11,2 16,5 16,5 14,0 17,0 16,8 17,0 20,5 17,0 20,5 17,0 20,5 17,0 20,5 17,0	b2 22,4 30,5 30,5 32,0 32,0 32,7 41,5 41,5 41,5 41,5	k 4,5 4,5 5,0 6,5 6,0 7,0 8,0 8,0 8,0 8,0 10,0 11,0 12,0 13,5 9,0	Ø 6 8 10 12 10 12 16 10 12 16 10 12 16 10 12 16 20 16 20 10 10	JD, JH JD, JH JD, JH JD JD JD JD JD JD JD JD JD JD JD JD JD	Ø Ø b2 b2 Fig. 2 Serrated channel bolts JXH, JXB
K 38/1 K 40/2 W 40/2 W 40/2 W 40+ K 50/3 W 50/3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	JD/JUD JH JH/JUH JKC JB	11,2 16,5 16,5 14,0 17,0 16,8 17,0 20,5 17,0 20,5	22,4 30,5 30,5 32,0 32,0 32,7 41,5 41,5 41,5 41,5	4,5 5,0 6,5 6,0 7,0 8,0 8,0 8,0 8,0 8,0 8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	8 10 12 10 12 16 10 12 16 10 12 16 10 12 16 10 12 16 20 16 20	Fig. 1	b 2 b 2 Fig. 2 Fig. 2 Serrated channel bolts JXH, JXB
K 38/1 K 40/2 W 40/2 W 40/2 W 40+ K 50/3 W 50/3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	JD/JUD JH JH/JUH JKC JB	11,2 16,5 16,5 14,0 17,0 16,8 17,0 20,5 17,0 20,5	22,4 30,5 30,5 32,0 32,0 32,7 41,5 41,5 41,5 41,5	5,0 6,5 6,0 7,0 8,0 8,0 8,0 8,0 8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	10 12 10 12 16 10 12 16 10 12 16 20 16 20	Fig. 1	b b Fig. 2 Serrated channel bolts
K 38/1 K 40/2 W 40/2 W 40/2 W 40+ K 50/3 W 50/3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	JH JH/JUH JC JB	16,5 16,5 14,0 17,0 16,8 17,0 20,5 17,0 20,5	30,5 30,5 32,0 32,0 32,7 41,5 41,5 41,5 41,5	6,5 6,0 7,0 8,0 8,0 8,0 8,0 8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	12 10 12 16 10 12 16 16 10 12 16 20 16 20	Fig. 1	b 2 b 2 Fig. 2 Fig. 2 Serrated channel bolts JXH, JXB
K 40/2 W 40/2 W 40+ W 40/2 W 40+ K 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JH JH/JUH JC JB	16,5 16,5 14,0 17,0 16,8 17,0 20,5 17,0 20,5	30,5 30,5 32,0 32,0 32,7 41,5 41,5 41,5 41,5	6,0 7,0 8,0 8,0 8,0 8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	10 12 16 10 12 16 10 12 16 20 16 20	Fig. 1	b 2 b 2 Fig. 2 Fig. 2 Serrated channel bolts JXH, JXB
K 40/2 W 40/2 W 40+ W 40/2 W 40+ K 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JH/JUH JC JKC JKB	16,5 14,0 17,0 16,8 17,0 20,5 17,0 20,5 17,0 20,5	30,5 32,0 32,0 32,7 41,5 41,5 41,5 41,5	7,0 8,0 8,0 8,0 8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	12 16 10 12 16 16 10 12 16 20 16 20	Fig. 1	b 2 b 2 Fig. 2 Fig. 2 Serrated channel bolts JXH, JXB
K 40/2 W 40/2 W 40+ W 40/2 W 40+ K 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JH/JUH JC JKC JKB	16,5 14,0 17,0 16,8 17,0 20,5 17,0 20,5 17,0 20,5	30,5 32,0 32,0 32,7 41,5 41,5 41,5 41,5	8,0 8,0 8,0 8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	16 10 12 16 10 12 16 20 16 20	Fig. 1 Double notching channel bolts	b 2 b 2 Fig. 2 Fig. 2 Serrated channel bolts JXH, JXB
W 40/2 W 40+ W 40/2 W 40+ K 50/3 W 50/3 W 50/3 W 50+ K 53/3 W 50/3 W 50/3 W 50/3	2 2 2 3 0 2 4 4 0 3 4	JC JKC JB JKB	14,0 17,0 16,8 17,0 20,5 17,0 20,5	32,0 32,0 32,7 41,5 41,5 41,5 41,5	8,0 8,0 8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	10 12 16 16 10 12 16 20 16 20	Fig. 1 Double notching channel bolts	b 2 b 2 Fig. 2 Fig. 2 Serrated channel bolts JXH, JXB
W 40/2 W 40+ W 40/2 W 40+ K 50/3 W 50/3 W 50/3 W 50+ K 53/3 W 50/3 W 50/3 W 50/3	2 2 2 3 0 2 4 4 0 3 4	JKC JB JKB	17,0 16,8 17,0 20,5 17,0 20,5	32,0 32,7 41,5 41,5 41,5 41,5	8,0 8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	12 16 10 12 16 20 16 20	Fig. 1 Double notching channel bolts	b 2 b 2 Fig. 2 Fig. 2 Serrated channel bolts JXH, JXB
W 40+ W 40/2 W 40/2 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3		JKC JB JKB	17,0 16,8 17,0 20,5 17,0 20,5	32,0 32,7 41,5 41,5 41,5 41,5	8,0 8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	16 16 10 12 16 20 16 20	Double notching channel bolts	Fig. 2 Fig. 2 Serrated channel bolts JXH, JXB
UW 40/2 W 40+ K 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3 W 50/3	3 0 2 4 4 0 3 4	JB JKB	16,8 17,0 20,5 17,0 20,5	32,7 41,5 41,5 41,5 41,5 41,5	8,0 9,0 10,0 11,0 12,0 12,0 13,5 9,0	16 10 12 16 20 16 20	Double notching channel bolts	Fig. 2 Serrated channel bolts JXH, JXB
W 40+ K 50/3 W 50/3 W 50/3 W 50+ K 53/3 W 50/3 W 50/3 W 50+ W 53/3	3 0 2 4 4 0 3 4	JB JKB	17,0 20,5 17,0 20,5	41,5 41,5 41,5 41,5 41,5	9,0 10,0 11,0 12,0 12,0 13,5 9,0	10 12 16 20 16 20	channel bolts	Fig. 2 Serrated channel bolts JXH, JXB
UV 50/3 W 50+ K 53/3 W 53/3 W 50/3 W 50/3 W 50+ W 53/3	0 2 4 4 0 3 4	ЈКВ	20,5 17,0 20,5	41,5 41,5 41,5	10,0 11,0 12,0 12,0 13,5 9,0	12 16 20 16 20	channel bolts	Fig. 2 Serrated channel bolts JXH, JXB
JTA W 50+ K 53/3 W 53/2 W 50/3 W 50+ W 53/2	2 4 0 3 4	ЈКВ	20,5 17,0 20,5	41,5 41,5 41,5	11,0 12,0 12,0 13,5 9,0	16 20 16 20	channel bolts	Serrated channel bolts JXH, JXB
K 53/3 W 53/3 W 50/3 W 50+ W 53/3	4 4 0 3 4	ЈКВ	17,0 20,5	41,5 41,5	12,0 12,0 13,5 9,0	20 16 20	channel bolts	Serrated channel bolts JXH, JXB
W 50/3 W 50+ W 53/3	0 3 4		17,0 20,5	41,5 41,5	12,0 13,5 9,0	16 20	channel bolts	channel bolts JXH, JXB
W 50+ W 53/3	4 3		20,5	41,5	13,5 9,0	20		JXH, JXB
W 53/3	4				9,0			
W 55/4		IR	17.0			10		
W 55/4			170					fr and the second se
W 55/4	<u></u>		17,0	41,5	10,0	12		
	2 2	JD			11,0	16		
			20,5	41,5	12,0	20		
		JB/JE	24,5	41,5	16,0	24		
			25,0	_	14,0	20		Ø
K 72/4		JA	25,0	58,0	20,0	24		
W 72/4	8		28,0	-	20,0	27		
	_		31,0		20,0	30	b 2	b 2
W 38/2	3 4	JXH	17,2	28,9	8,0	12		
JXA					8,0	16		Fig. 4
W 53/3	4 4	JXB	21,0	41,6	11,5	16	- L/IECEV	
					13,0	20	b2	
							Fig. 3	
							Notch for marki	ng the position
ORDAHL ar	chor cł	nannel JTA	A and .	JXA				
roduct des								Annex A11

Channel bolt	ades of bol	steel 1)	Stainles	s steel ¹⁾
Strength grade ²⁾	4.6	8.8	50	70
f _{uk}	400	800	500	700
f _{yk} [N/mm ²]	240	640	210	450
		plated,	210	400
Finish ¹⁾ Materials according	hot-dip ga	alvanized	-	_
JORDAHL anchor	channel	JTA and	JXA	
Product descripti Types of channel b		aterial		

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static loads in tension as well as shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel.
- Fatigue cyclic tension loading.
- Fire exposure for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Service conditions (environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A3 and A4, Table A1, column 1 – 5).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and applications under water) (anchor channels and channel bolts according to Annex A3 and A4, Table A1, column 2 – 5)
- According to EN 1993-1-4:2006 + A2:2015 relating to corrosion resistance class CRC III (anchor channels and channel bolts according to A4, Table A1, column 3 – 5)
- According to EN 1993-1-4:2006 + A2:2015 relating to corrosion resistance class CRC IV (anchor channels and channel bolts according to A4, Table A1, column 4 – 5)
- According to EN 1993-1-4:2006 + A2:2015 relating to corrosion resistance class CRC V (anchor channels and channel bolts according to A4, Table A1, column 5)

Design:

- Anchor channels are designed under the responsibility on an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or EN 1992-4:2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050, Oktober 2018 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", November 2015.
- The characteristic resistances are calculated with the minimum effective embedment depth.

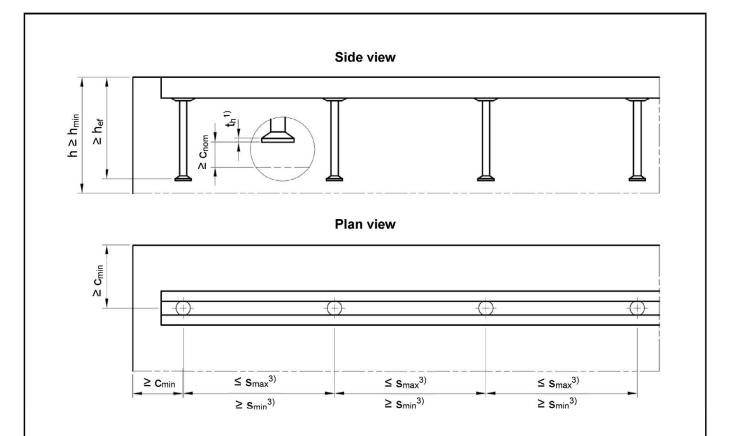
JORDAHL anchor channel JTA and JXA

Intended use

Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A9, Table A6 and Annex A10, Table A7 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3 and A4, Table A1, column 1). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instructions given in Annexes B8 and B9
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channel.
- Washer may be chosen according to Annex A3 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex A11) perpendicular to the channel axis.
- The required installation torques given in Annex B5 and B6 must be applied and must not be exceeded.


JORDAHL anchor channel JTA and JXA

Intended use Specifications

Page 19 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

 $^{3)}\,s_{\text{min}},\,s_{\text{max}}\,according$ to Annex A9, Table A6 and Annex A10, Table A7

Table D1. Minimum offective embedment death	ada diatanan and mambar thiskness $(TA\rangle)$
Table B1: Minimum effective embedment depth,	

			JTA								
Anchor channel	Anchor channel			W 40+	W 50/30	W 50+	W 53/34	W 55/42	W 72/48		
Min. effective embedment depth round anchors and l-anchors	h _{ef,min}		79	91	94	106	155	175	179		
Min. edge distance round anchors	Cmin	l m u	50	50	75	75	100	100	150		
Min. member thickness round anchors and I-anchors	h _{min}]-	90	102	105	118	170	191	195		
Min. member thickness in general	\mathbf{h}_{min}				h _{ef} ⊦	- t _h ¹⁾ + c _r	iom ²⁾				

¹⁾ t_h according to Annex A7, Table A4 and Annex A8, Table A5

²⁾ c_{nom} according to EN 1992-1-1:2004 + AC:2010

JORDAHL anchor channel JTA and JXA

Intended use

Installation parameters of anchor channels (JTA W)

Table B2: Minimum effective embedment depth, edge distance and member thickness (JXA)

			J)	(A
Anchor channel			W 38/23	W 53/34
Min. effective embedment depth round anchors and l-anchors	h _{ef,min}		95	155
Min. effective embedment depth T-anchors	h _{ef,min}		54	76
Min. edge distance round anchors	Cmin	 	75	100
Min. edge distance T-anchors	Cmin	[mm]	50	100
Min. member thickness round anchors	h _{min}		120	190
Min. member thickness T-anchors	h _{min}		100	110
Min. member thickness in general	h _{min}		h _{ef} + t _h ¹⁾	+ C _{nom} ²⁾

¹⁾ t_h according to Annex A7, Table A4 and Annex A8, Table A5

²⁾ c_{nom} according to EN 1992-1-1:2004 + AC:2010

			JTA								
Anchor channel			K 28/15	K 38/17	K 40/25	K 50/30	K 53/34	K 72/48			
Min. effective embedment depth round anchors and l-anchors	h ef,min		45	76	79	94	155	179			
Min. edge distance round anchors	Cmin		40	50	50	75	100	150			
Min. member thickness round anchors and I-anchors	h _{min}]	55	87	90	105	170	195			
Min. member thickness	h _{min}				h _{ef} + t _h ¹⁾	+ Cnom ²⁾					

Table B3: Minimum effective embedment depth, edge distance and member thickness (JTA K)

in general ¹⁾ t_h according to Annex A7, Table A4 and Annex A8, Table A5 The second discount + AC:2010

²⁾ c_{nom} according to EN 1992-1-1:2004 + AC:2010

JORDAHL anchor channel JTA and JXA

Intended use

Installation parameters of anchor channels (JXA and JTA K)

				Inst	allation torque T	inst ⁴⁾
		JORDAHL T-bolt	Min. spacing of the	General ²⁾ T _{inst,g}		l contact ³⁾ st,s
Ancho	r channel	ø	channel bolt Smin,cbo	Steel 4.6; 8.8 ¹⁾ Stainless steel 50; 70 ¹⁾	Steel 4.6 ¹⁾ Stainless steel 50 ¹⁾	Steel 8.8 ¹⁾ Stainless stee 70 ¹⁾
		[mm]	[mm]		[Nm]	
		6	30	3	3	8
		8	40	8	8	20
	K 28/15	10	50	13	15	40
		12	60	15	25	70
		10	50	15	15	40
	K 38/17	12	60	25	25	70
		16	80	40	65	180
	K 40/25	10	50	15	15	40
	W 40/22	12	60	25	25	70
	W 40+	16	80	45	65	180
	K 50/30	10	50	15	15	40
		12	60	25	25	70
	W 50/30 W 50+	16	80	60	65	180
JTA		20	100	75	130	360
		10	50	15	15	40
	K 53/34	12	60	25	25	70
	W 53/34	16	80	60	65	180
		20	100	120	130	360
		10	50	15	15	40
		12	60	25	25	70
	W 55/42	16	80	60	65	180
		20	100	120	130	360
		24	120	200	230	620
		20	100	120	130	360
	K 72/48	24	120	200	230	620
	W 72/48	27	135	300	340	900
		30	150	380	460	1200

⁴⁾ T_{inst} must not be exceeded

JORDAHL anchor channel JTA and JXA

Intended use

Installation parameters of channel bolts (for JTA W and JTA K)

Page 22 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

Table B5: Minimum spacing and installation torque of channel bolts (for JXA)

				Inst	allation torque T	inst ⁴⁾	
		JORDAHL T-bolt	Min. spacing of the	General ²⁾ T _{inst,g}	Steel-steel contact ³⁾ T _{inst,s}		
Anchor	channel	Ø	channel bolt S _{min,cbo}	Steel 4.6; 8.8 ¹⁾ Stainless steel 50; 70 ¹⁾	Steel 4.6 ¹⁾ Stainless steel 50 ¹⁾	Steel 8.8 ¹⁾ Stainless steel 70 ¹⁾	
		[mm]	[mm]	[Nm]			
	W 38/23	12	60	70	_ ⁵⁾	70	
JXA	VV 30/23	16	80	120	_ ⁵⁾	180	
JAA	W 53/34	16	80	180	_ ⁵⁾	180	
	VV 53/34	20	100	300	_ 5)	360	

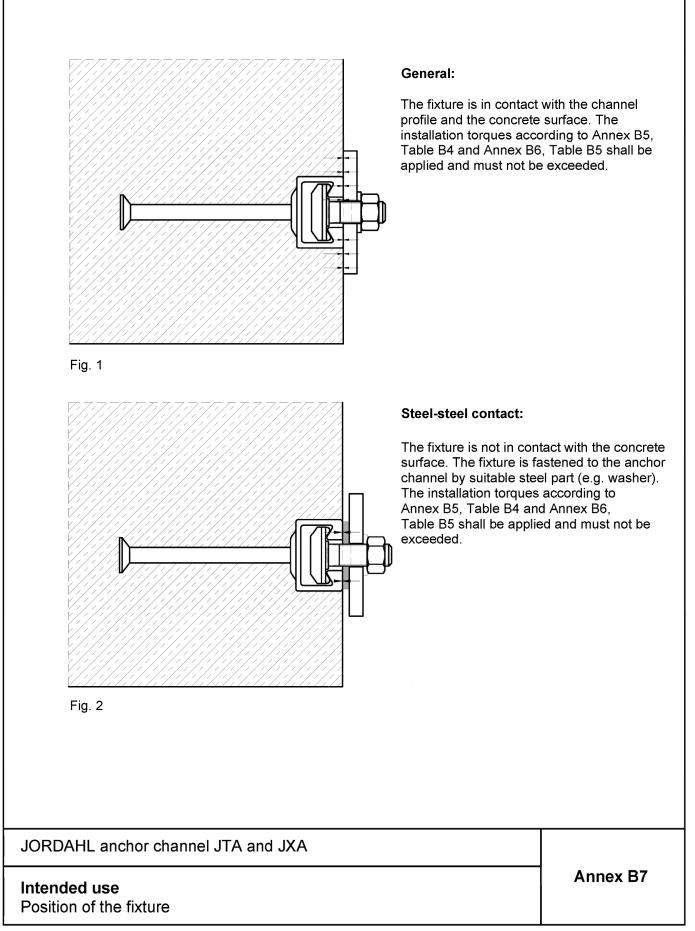
¹⁾ Materials according to Annex A2 to A4

²⁾ According to Annex B5, Fig. 1

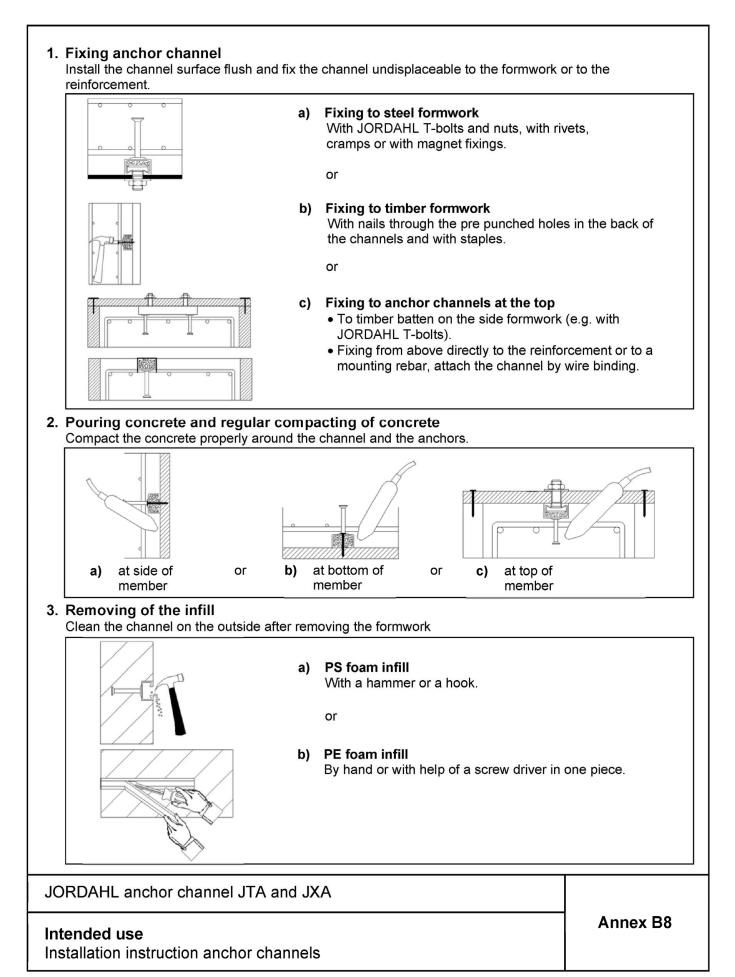
³⁾ According to Annex B5, Fig. 2

⁴⁾ T_{inst} must not be exceeded

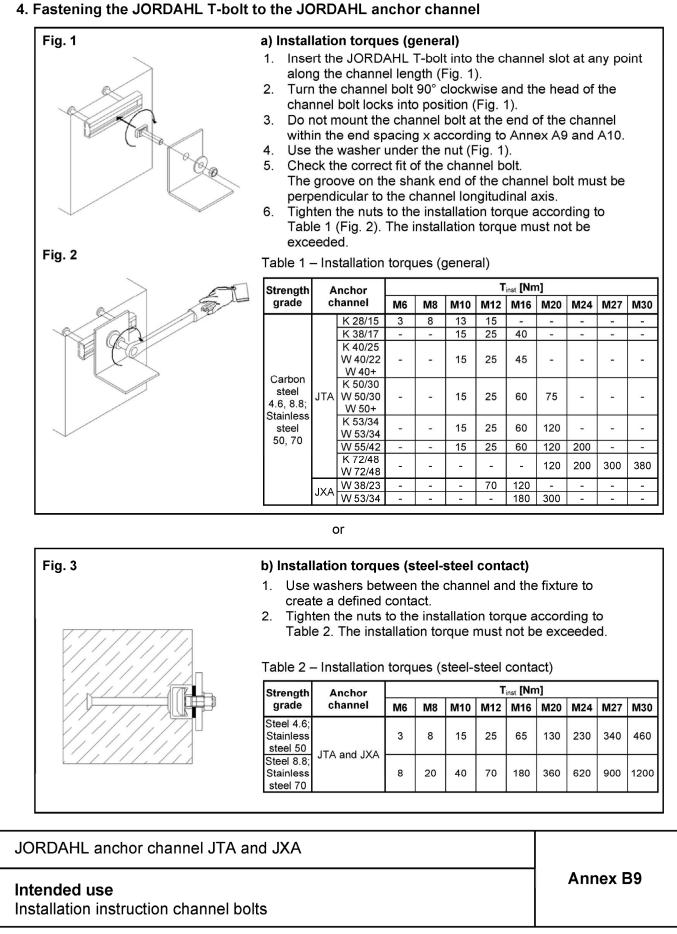
⁵⁾ Product not available


JORDAHL anchor channel JTA and JXA

Intended use Installation parameters of channel bolts (for JXA)


Page 23 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt



Page 26 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

Ancherchennel						JTA				
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48	
Steel failure: Ancho	r		I				•	1		
Characteristic resistance	N _{Rk,s,a}	[kN]	20	30	32	39	56	82	102	
Partial factor	γms	₃ 1)				1,8				
Steel failure: Conne	ction bet	ween a	nchor and	channel						
Characteristic resistance	N _{Rk,s,c}	[kN]	20	29	31	39	55	80	100	
Partial factor	γMs,	ca ¹⁾				1,8				
Steel failure: Local	flexure of	f chann	el lips							
Spacing of channel bolts for N _{Rk,s,l}	SI,N	[mm]	79	79	98	98	105	109	144	
Characteristic resistance	N ⁰ Rk,s,I	[kN]	38	38	43	43	72	110	120	
Partial factor	γMs	, ¹⁾	1,8							
¹⁾ In absence of other	national	regulatio	ons							

JORDAHL anchor channel JTA and JXA

Performance Characteristic resistances under tension load – steel failure anchor channels (JTA W)

Page 27 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

Table C2: Characteristic resistances under tension load - Steel failure of anchor channel (JXA)

A			Jک	(A		
Anchor channel			W38/23	W53/34		
Steel failure: Ancho	r					
Characteristic resistance	N _{Rk,s,a} [kN]		31,4	51,7		
Partial factor	γMs	, ¹⁾	1,8			
Steel failure: Conne channel	ction bet	ween a	nchor and	I		
Characteristic resistance	N _{Rk,s,c}	[kN]	35,3	72,6		
Partial factor	γMs,o	ca ¹⁾	1,8			
Steel failure: Local f	lexure of	f chann	el lips			
Spacing of channel bolts for N _{Rk,s,l}	SI,N	[mm]	76	106		
Characteristic resistance	N ⁰ Rk,s,I	[kN]	35,3	72,6		
Partial factor	γMs	,I ¹⁾	1	,8		

¹⁾ In absence of other national regulations

JORDAHL anchor channel JTA and JXA

Performance Characteristic resistances under tension load – steel failure anchor channels (JXA)

Page 28 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

					J	ГА					
Anchor channel			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48			
Steel failure: Ancho	r										
Characteristic resistance	N _{Rk,s,a}	[kN]	13	18	20	32	56	102			
Partial factor	γMs	,1)	1,8								
Steel failure: Conne	ction bet	ween a	nchor and	l channel							
Characteristic resistance	N _{Rk,s,c}	[kN]	9	18	20	31	55	100			
Partial factor	γms,o	γ _{Ms,ca} ¹⁾ 1,8									
Steel failure: Local f	flexure of	chann	el lips								
Spacing of channel bolts for N _{Rk,s,l}	SI,N	[mm]	56	76	80	100	107	144			
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9	18	20	31	55	100			
Partial factor	γMs	γ _{Ms.I} ¹⁾ 1,8									

Characteristic resistances under tension load - steel failure anchor channels (JTA K)

				JTA					
Anchor channel				W40/22 W40+	W50/30 W50+	W53/34	W55/42	W72/48	
Steel failure: Flexu	re of chann	el		-					
Characteristic	M _{Rk,s,flex}	Round	Carbon steel	1406	2830	3373	6447	8593	
flexural resistance of channel	[Nm]	anchors, I-anchors	Stainless steel	1580	3184	3445	_ 2)	8775	
Partial factor		γMs,flex ¹⁾		1,15					

¹⁾ In absence of other national regulations

²⁾ No performance assessed

Table C5: Characteristic flexural resistance of anchor channel (JXA)

				٦	(A
Anchor channel				W38/23	W53/34
Steel failure: Flexure	e of chann	el			
Characteristic	M _{Rk,s,flex}	Round anchors, I-anchors	Carbon steel	1598	4152
flexural resistance of channel	[Nm]	T-anchors	Carbon steel	832	2476
Partial factor	1	γMs,fle	1) x	1,	15

¹⁾ In absence of other national regulations

JORDAHL anchor channel JTA and JXA

Performance Characteristic resistances under tension load – steel failure anchor channels (JTA W and JXA)

						J	ТА		
Anchor channel				K28/15	K38/17	K40/25	K50/30	K53/34	K72/48
Steel failure: Flexu	re of chann	el		1	1	I	1	I	1
Characteristic	M _{Rk,s,flex}	Round	Carbon steel	317	580	1099	1673	2984	8617
flexural resistance of channel	[Nm]	anchors, I-anchors	Stainless steel	324	593	1071	1708	2984	8617
Partial factor		γMs,fle	1)			1,	15		1

Characteristic resistances under tension load - steel failure anchor

channels (JTA K)

Channel bolt ø				M6	M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure: Cl	nannel	bolt												
			4,6 ¹⁾	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4		
Characteristic	N	FIZN11	[kN]		29,3	46,4	67,4	125,6	196,0	282,4	367,2	448,8		
resistance ²⁾	N _{Rk,s}	נגואן	50 ¹⁾	10,1	18,3	29,0	42,2	78,5	122,5	176,5	229,5	280,5		
			70 ¹⁾	14,1	25,6	40,6	59,0	109,9	171,5	247,1	321,3	392,7		
			4.6 ¹⁾					2,00						
Deutiel feater		3)	8.8 ¹⁾		1,50									
Partial factor	γ _{Ms} ³⁾	50 ¹⁾					2,86							
			70 ¹⁾	1,87										
 Materials according In conformity In absence of 	to EN IS	SO 898	-1:2013											

JORDAHL anchor channel JTA and JXA

Performance

Characteristic resistances under tension load – steel failure channel bolts

Page 32 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

							JTA						
Anchor channe	el			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48			
Concrete failu	re: Pullout			L		11		L	I	1			
Characteristic resistance in cracked	Round anchor	N _{Rk,p}	[kN]	10,8	17,3 (10,8) ²⁾	15,9	19,8	29,7	38,4	50,9			
concrete C12/15	I-anchor T-anchor	Т КК,р		14,0	19,8	21,1	24,8	25,7	37,2	46,4			
Characteristic resistance in uncracked	Round anchor	N _{Rk,p}	[kN]	15,1	24,2 (15,1) ²⁾	22,3	27,7	41,6	53,8	71,3			
concrete C12/15	I-anchor T-anchor	∎ п кк,р		19,7	27,7	29,5	34,7	36,0	52,1	65,0			
	C20/25				1,67								
	C25/30	-					2,08						
	C30/37						2,50						
Factor of	C35/45						2,92						
$N_{Rk,p} = N_{Rk,p}$	C40/50	ψc	[-]				3,33						
(C12/15) · ψ _c	C45/55						3,75						
	C50/60						4,17						
	C55/67						4,58						
	≥C60/75						5,00						
Partial factor		γмр	3)				1,5						
Concrete failu	re: Concret	e cone											
Produkt factor k	(1	Kcr	,N	8,9 · (h _{ef,min} /180) ^{0,15} ¹⁾									
		kuc	r,N	12,7 · (h _{ef,min} /180) ^{0,15} ¹⁾									
Partial factor		γΜα	3)				1,5						
Concrete failu	re: Splitting												
Characteristic e distance	dge	Ccr	,sp				3h _{ef,min} 1)						
Characteristic s	pacing	Scr	,sp				6h _{ef,min} 1)						
Partial factor		γMs	p ³⁾				1,5						
 ¹⁾ h_{ef,min} accord ²⁾ Values in bra ³⁾ In absence d 	ackets for st	ainless	steel a	anchors									
JORDAHL a	inchor cha	annel J	ITA a	nd JXA									
Performance Characterist									Annex	c C7			

				J	XA
Anchor chann	el			W38/23	W53/34
Concrete failu	re: Pullout				
Characteristic resistance in	Round anchor			19,8	29,7
cracked concrete C12/15	l-anchor T-anchor	N _{Rk.p}	[kN]	19,8	39,6
Characteristic resistance in	Round anchor		FL-N 17	27,7	41,6
uncracked concrete C12/15	I-anchor T-anchor	N _{Rk.p}	[kN]	27,7	55,4
	C20/25	_		1,	67
	C25/30			2,	08
	C30/37			2,	50
Factor of	C35/45			2,	92
$N_{Rk,p} = N_{Rk,p}$	C40/50	ψο	[-]	3,33	
(C12/15) · ψ _c	C45/55			3,	75
	C50/60	-		4,	17
	C55/67	-		4,	58
	≥C60/75			5,	00
Partial factor		γΜρ	2)	1	,5
Concrete failu	re: Concret	e cone			
Produkt factor k	<1 (1	kcr	,N	8,9 · (h _{ef,mi}	in/180) ^{0,15 1)}
		kuc	r,N	12,7 · (h _{ef,n}	nin /180)^{0,15 1)}
Partial factor		γма	2)	1	,5
Concrete failu	re: Splitting				
Characteristic e distance	edge	Ccr.	sp	3h _{ef}	_{f,min} 1)
Characteristic s	pacing	S _{cr.}	sp	6h _{ef}	_{f,min} 1)
Partial factor		γMs	p ²⁾	1	,5
¹⁾ h _{ef,min} accord ²⁾ In absence d					

Characteristic resistances under tension load – concrete failure anchor channels (JXA)

$\begin{array}{ c c c c c c } \hline Characteristic resistance in cracked concrete (1-anchor T-anchor C12/15) \\ \hline Characteristic resistance in uncracked concrete resistance in uncracked concrete (1-anchor T-anchor C12/15) \\ \hline Characteristic resistance in uncracked concrete (1-anchor T-anchor C12/15) \\ \hline Characteristic resistance in uncracked concrete (1-anchor T-anchor C12/15) \\ \hline C25/30 \\ \hline C30/37 \\ \hline C25/30 \\ \hline C30/37 \\ \hline C12/15) \\ \hline Vuc \end{array} \qquad $		_					J.	ТА				
resistance in cracked concrete concret	Anchor chann	el			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48		
resistance in cracked concrete concret	Concrete failu	re: Pullout			1	I	•	1	1			
$ \begin{array}{ c c c c } \hline \mbox{Concrete} & -anchor \\ \hline \mbox{C12/15} & -anchor \\ \hline \mbox{Characteristic} \\ \hline \mbox{Characteristic} \\ \hline \mbox{Cancrete} \\ \hline \mbox{Characteristic} \\ \hline \mbox{Cancrete} \\ \hline \mbox{C12/15} & -anchor \\ \hline \mbox{Hanchor} \\ \hline \mbox{Hanchor} \\ \hline \mbox{Hanchor} \\ \hline \mbox{Cancrete} \\ \hline \mbox{C12/15} & -anchor \\ \hline \mbox{Hanchor} \\ \hline \mbox{C12/15} & -anchor \\ \hline \mbox{C22/25} & -anchor \\ \hline \mbox{C22/25} & -anchor \\ \hline \mbox{C22/25} & -anchor \\ \hline \mbox{C22/30} & -anchor \\ \hline \mbox{C33/37} & -2,50 \\ \hline \mbox{C33/37} & -2,50 \\ \hline \mbox{C33/3} & -2,50 \\ \hline \mbox{C43/55} & -2,50 \\ \hline \mbox{C33/3} & -2,50 \\ \hline \$	resistance in			FL-N 13	6,7	14,7	10,8	15,9	29,7	50,9		
resistance in uncracked concrete $1 - anchor$ 1 - anchor 1 - anchor 2 - 50 2 - 5	concrete		INRk,p	[KN]	11,7	11,7	14,0	21,1	25,7	46,4		
$ \begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	resistance in		N	[LN]	9,4	20,6	15,1	22,3	41,6	71,3		
Factor of NRk,p = NRk,p (C12/15) · ψ_c Q_{00} Q_{00} Q_{00} Ye Q_{00} Q_{00} Q_{00} Q_{00} Partial factor Y_{00} Q_{00} Q_{00} Q_{00} Produkt factor k1 $k_{cr,N}$ $8,9 \cdot (h_{ef,min}/180)^{0,15-1}$ Q_{00} Partial factor Y_{00} Q_{00} Q_{00} Q_{00} Q_{00} Partial factor Y_{00} Q_{00} Q_{00} Q_{00} Q_{00} Q_{00} Q_{00} Partial factor Y_{00} Q_{00} <	concrete		INRk,p		16,4	16,4	19,7	29,5	36,0	65,0		
Factor of NRk p = NRk p (C12/15) · ψ_c C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 >C60/75 ψ_c I = 1 (-1) 2,50 2,92 (-1) Partial factor ψ_c I = 1 (-1) $3,33$ (-1,75) C50/60 C55/67 >C60/75 ψ_c I = 1 (-1) $3,75$ (-1,75) Partial factor γ_{Mp}^{2} 1,5 Produkt factor k1 $k_{cr,N}$ $8,9 \cdot (hef,min/180)^{0.15-1}$ Produkt factor k1 $k_{cr,N}$ $8,9 \cdot (hef,min/180)^{0.15-1}$ Partial factor γ_{Mc}^{2} 1,5 Concrete failure: Splitting γ_{Mc}^{2} 1,5 Characteristic edge distance $C_{cr,sp}$ $3h_{ef,min}^{-1}$ Characteristic spacing $S_{cr,sp}$ $6h_{ef,min}^{-1}$ Partial factor γ_{Msp}^{2} 1,5 Characteristic spacing $S_{cr,sp}$ $6h_{ef,min}^{-1}$ Partial factor γ_{Msp}^{2} 1,5 * $2^{Nsp}_{r,sp}^{-2}$ 1,5		C20/25			1,67							
Factor of NRk,p = NRk,p (C12/15) · ψ_c C35/45 C40/50 C45/55 C50/60 C55/67 \geq C60/75 ψ_c [-] 2,92 Partial factor C45/55 C50/60 C55/67 $4,17$ $3,75$ C50/60 C55/67 $2C60/75$ $4,58$ \geq C60/75 γ_{Mp}^{2} $1,5$ Concrete failure: Concrete cone Produkt factor k ₁ kcr,N $8,9 \cdot (hef,min/180)^{0,15-1}$ Kucr,N $12,7 \cdot (hef,min/180)^{0,15-1}$ Produkt factor k ₁ kcr,N $8,9 \cdot (hef,min/180)^{0,15-1}$ Partial factor γ_{Mc}^{2} $1,5$ Concrete failure: Splitting Characteristic edge distance $C_{cr,sp}$ $3h_{ef,min}^{-1}$ Characteristic spacing $s_{cr,sp}$ $6h_{ef,min}^{-1}$ Partial factor $\gamma_{Msp}^{2/2}$ $1,5$ ') hef,min according to Annex B4, Table B3 $1,5$		C25/30					2,	08				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C30/37	-				2,	50				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C35/45	-				2,	92				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(C12/15) · ψ _c C45/55	ψο	[-]								
C55/67 $\geq C60/75$ 4,58Partial factor γ_{Mp}^{2} 5,00Partial factor γ_{Mp}^{2} 1,5Concrete conekcr,N $8,9 \cdot (hef,min/180)^{0,15-1}$ Produkt factor k1kcr,Nkcr,N $8,9 \cdot (hef,min/180)^{0,15-1}$ Partial factor γ_{Mc}^{2} 1,5Concrete failure: SplittingCharacteristic edge distanceccr.spShef,min 1)Characteristic spacingScr.spGhef,min 1)Partial factor γ_{Msp}^{2} 1,5	(C12/15) · ψ _c		-				3,	75				
≥C60/75 $5,00$ Partial factor γ_{Mp}^{2} 1,5Concrete failure: Concrete conekcr,N $8,9 \cdot (h_{ef,min}/180)^{0,15-1}$ Produkt factor k1kcr,N $8,9 \cdot (h_{ef,min}/180)^{0,15-1}$ Partial factor γ_{Mc}^{2} 1,5Concrete failure: SplittingCharacteristic edge distanceCcr,sp $3h_{ef,min}^{1}$ Characteristic spacingScr,sp $6h_{ef,min}^{1}$ Partial factor γ_{Msp}^{2} 1,5Characteristic spacingScr,sp $6h_{ef,min}^{1}$ Partial factor γ_{Msp}^{2} 1,51,5	C55/67	-										
Partial factor γ_{Mp}^{2} 1,5 Concrete failure: Concrete cone 8,9 · (hef,min/180) ^{0,15 · 1)} Produkt factor k ₁ kcr,N 8,9 · (hef,min/180) ^{0,15 · 1)} Partial factor γ_{Mc}^{2} 12,7 · (hef,min/180) ^{0,15 · 1)} Partial factor γ_{Mc}^{2} 1,5 Concrete failure: Splitting Characteristic edge distance Cer.sp $3h_{ef,min}^{1}$ Characteristic spacing Scr,sp $6h_{ef,min}^{1}$ $1,5$ Partial factor γ_{Msp}^{2} $1,5$ $1,5$ Partial factor γ_{Msp}^{2} $1,5$ $1,5$ Partial factor $1,5$ $1,5$ $1,5$ Partial factor γ_{Msp}^{2} $1,5$ $1,5$ Partial factor $1,5$ $1,5$ $1,5$ Partial factor γ_{Msp}^{2} $1,5$ $1,5$ 1^{1} hef,min according to Annex B4, Table B3 $1,5$ $1,5$		-										
Concrete failure: Concrete cone Produkt factor k1 k.cr.N $8,9 \cdot (h_{ef,min}/180)^{0.15-1}$ Partial factor γ_{Mc}^{2} $12,7 \cdot (h_{ef,min}/180)^{0.15-1}$ Partial factor γ_{Mc}^{2} $1,5$ Concrete failure: Splitting Characteristic edge distance $C_{cr.sp}$ $3h_{ef,min}^{-1}$ Characteristic spacing $s_{cr.sp}$ $6h_{ef,min}^{-1}$ $1,5$ Partial factor $\gamma_{Msp}^{2/2}$ $1,5$ Partial factor $\gamma_{Msp}^{2/2}$ $1,5$ Partial factor $\gamma_{Msp}^{2/2}$ $1,5$		≥C60/75										
Produkt factor k1kcr,N $8,9 \cdot (h_{ef,min}/180)^{0,15-1}$ Partial factor γ_{Mc}^{2} $12,7 \cdot (h_{ef,min}/180)^{0,15-1}$ Partial factor γ_{Mc}^{2} $1,5$ Characteristic edge distanceCharacteristic spacing $c_{cr,sp}$ $3h_{ef,min}^{-1}$ Characteristic spacing $s_{cr,sp}$ $6h_{ef,min}^{-1}$ Partial factor γ_{Msp}^{2} $1,5$				2)			1	,5				
Produkt factor k1kucr,N $12,7 \cdot (h_{ef,min}/180)^{0.15-1}$ Partial factor γ_{Mc}^{2} $1,5$ Concrete failure: SplittingCharacteristic edge distance $c_{cr,sp}$ $3h_{ef,min}^{1}$ Characteristic spacing $s_{cr,sp}$ $6h_{ef,min}^{1}$ Partial factor γ_{Msp}^{2} $1,5$	Concrete failu	re: Concret	e cone									
kucr,N 12,7 · (hef,min/180) ^{0,15 - 1)} Partial factor γMc ²) 1,5 Concrete failure: Splitting Characteristic edge distance C _{cr,sp} 3h _{ef,min} 1) Characteristic spacing S _{cr,sp} 6h _{ef,min} 1) Partial factor γMsp ²) 1,5 ¹) hef,min according to Annex B4, Table B3	Produkt factor k	()	kcr	;,N	8,9 · (h _{ef,min} /180) ^{0,15} 1)							
Concrete failure: Splitting Characteristic edge distance $C_{cr,sp}$ $3h_{ef,min}$ ¹⁾ Characteristic spacing $s_{cr,sp}$ $6h_{ef,min}$ ¹⁾ Partial factor $\gamma_{Msp}^{2)}$ 1,5 ¹⁾ hef,min according to Annex B4, Table B3	T TOUCKI TACIOT I	N1	kuc	r,N		1	2,7 · (h _{ef,m}	15 (180) ^{0,15}	1)			
Concrete failure: Splitting Characteristic edge distance $C_{cr,sp}$ $3h_{ef,min}$ ¹⁾ Characteristic spacing $s_{cr,sp}$ $6h_{ef,min}$ ¹⁾ Partial factor $\gamma_{Msp}^{2)}$ 1,5 ¹⁾ hef,min according to Annex B4, Table B3	Partial factor		γΜα	2 ²⁾			1	,5				
distance $C_{cr,sp}$ $3 \Pi_{ef,min}$ '/Characteristic spacing $s_{cr,sp}$ $6 h_{ef,min}$ 1)Partial factor $\gamma_{Msp}^{2)}$ 1,51) $h_{ef,min}$ according to Annex B4, Table B3	Concrete failu	re: Splitting										
Partial factor $\gamma_{Msp}^{2)}$ 1,5 ¹⁾ hef,min according to Annex B4, Table B3		edge	Ccr	,sp			3h _{ef}	, _{min} 1)				
¹⁾ h _{ef,min} according to Annex B4, Table B3	Characteristic s	pacing	Scr	sp			6h _{ef}	,min ¹⁾				
							1	,5				
JORDAHL anchor channel JTA and JXA	JORDAHL a	anchor cha	innel J	ITA a	nd JXA							

Table C11: Displacements under tension load (JTA W)

Anchorobannal	Anchor channel				JTA								
			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48				
Tension load	N	[kN]	7,9	11,5	12,3	15,5	21,8	31,7	39,7				
Short-term displacement	δηο	[mm]	0,4	0,4	0,4	0,5	0,5	0,5	0,5				
Long-term displacement	δ _{N∞}	[mm]	0,8	0,8	0,8	1,0	1,0	1,0	1,0				

Table C12: Displacements under tension load (JXA)

Anchor channel			٦	(A
Anchor channel			W38/23	W53/34
Tension load	Ν	[kN]	14,7	31,2
Short-term displacement	δνο	[mm]	1,0	0,9
Long-term displacement	δ _{N∞}	[mm]	2,0	1,8

Table C13: Displacements under tension load (JTA K)

Anchor channel					J	ГА		
Anchor channel			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48
Tension load	N	[kN]	3,6	7,1	7,9	12,3	21,8	39,7
Short-term displacement	δηο	[mm]	0,3	0,3	0,4	0,4	0,5	0,5
Long-term displacement	δ _{N∞}	[mm]	0,6	0,6	0,8	0,8	1,0	1,0

JORDAHL anchor channel JTA and JXA

Performance

Displacements under tension load

						JTA			
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Steel failure: Ancho	r						1		
Characteristic resistance	V _{Rk,s,a,y}	[kN]	35	35	52	59	78	110	146
Partial factor	γMs	1)				1,5			
Steel failure: Conne	ection bet	ween a	nchor and	channel					
Characteristic resistance	V _{Rk,s,c,y}	[kN]	35	35	52	59	78	110	146
Partial factor	γMs,c	a ¹⁾				1,8			
Steel failure: Local f	flexure of	channe	el lips						
Spacing of channel bolts for V _{Rk,s,l}	SI,V	[mm]	79	79	98	98	105	109	144
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	35	35	52	59	78	110	146
Partial factor	γMs,	1)				1,8			

channels (JTA W)

A			J	(A	
Anchor channel			W38/23	W53/34	
Steel failure: Ancho	or				
Characteristic resistance	V _{Rk,s,a,y}	[kN]	48,3	101,1	
Characteristic resistance	V _{Rk,s,a,x}	[kN]	15,7	28,6	
Partial factor	γms	1)	1	,5	
Steel failure: Conne channel	ection bet	ween a	nchor and		
Characteristic resistance	V _{Rk,s,c,y}	[kN]	48,3	101,1	
Characteristic resistance	V _{Rk,s,c,x}	[kN]	17,7	36,3	
Partial factor	γMs,c	;a ¹⁾	1	,8	
Steel failure: Local	flexure of	f chann	el lips		
Spacing of channel bolts for V _{Rk,s,l}	SI,V	[mm]	76	106	
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	48,3	101,1	
Partial factor	γMs,	¹⁾	1	,8	
Characteristic resistance	V _{Rk,s,l,x}	[kN]	19,4	33,8	
Installation factor	γin	st	1	,0	
Partial factor	γ́Ms,I	,x ¹⁾	1	,8	
In absence of other	national re	egulatio	าร		
ORDAHL anchor	channel	JTA a	nd JXA		

					JT	A					
Anchor channel			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48			
Steel failure: Ancho)r							l			
Characteristic resistance	V _{Rk,s,a,y}	[kN]	13	18	20	32	56	102			
Partial factor	γMs	1)			1	,5					
Steel failure: Conne	ction bet	ween a	nchor and	l channel							
Characteristic resistance	V _{Rk,s,c,y}	[kN]	9	18	20	31	55	100			
Partial factor	γMs,c	a ¹⁾	1,8								
Steel failure: Local	flexure of	chann	el lips								
Spacing of channel bolts for V _{Rk,s,l}	SI,V	[mm]	56	76	80	100	107	144			
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	9	18	20	31	55	100			
Partial factor	γMs,	_ 1)			1	,8					

Performance Characteristic resistances under shear load – steel failure anchor channels (JTA K)

Page 39 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

Anchor channe	.1					JTA				
Anchor channe	*1		W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48	
Concrete failur	e: Pry-out							-		
Product factor	k ₈				2,0					
Partial factor		γMc ¹⁾	1,5							
Concrete failur	e: Concrete ed	ge								
Product factor	cracked concrete	k cr,∨				7,5				
K ₁₂	uncracked concrete	uncracked kursty 10.5								
Partial factor		γ _{Mc} 1)	1,5							

¹⁾ In absence of other national regulations

Table C18: Characteristic resistances under shear load – Concrete failure of anchor channel (JXA)

Anchorobanna			J	(A
Anchor channe	1		W38/23	W53/34
Concrete failure	e: Pry-out			
Product factor		k ₈	2,0 (1,0) ²⁾	2,0
Partial factor		γ Mc ¹⁾	1,	,5
Concrete failure	e: Concrete edg	je		
Product factor	cracked concrete	k cr,V	7,5 (5,6) ²⁾	7,5 (6,4) ²⁾
k ₁₂	uncracked concrete	k ucr,∨	10,5 (7,8) ²⁾	10,5 (8,9) ²⁾
Partial factor		γмс ¹⁾	1	,5

¹⁾ In absence of other national regulations ²⁾ Values in brackets for T-anchors

JORDAHL anchor channel JTA and JXA

Performance Characteristic resistances under shear load – concrete failure anchor channels (JTA W and JXA)

Page 40 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

					J.	ΤΑ		
Anchor channe) 		K28/15	K38/17	K40/25	K50/30	K53/34	K72/48
Concrete failur	e: Pry-out						•	•
Product factor		k ₈	1,0			2,0		
Partial factor		γ _{Mc} ¹⁾			1	,5		
Concrete failur	e: Concrete ec	lge	1					
Product factor	cracked concrete	k _{cr,V}	4,5			7,5		
k ₁₂	uncracked concrete	k _{ucr,∨}	6,3			10,5		
Partial factor		γ _{Mc} ¹⁾			1	,5		

JORDAHL anchor channel JTA and JXA

Performance Characteristic resistances under shear load – concrete failure anchor channels (JTA K)

				M6	M8	M10	M12	M16	M20	M24	M27	M30				
Steel failure: C	hannel	bolt			1	1										
			4,6 ¹⁾	4,8	8,8	13,9	20,2	37,7	58,8	84,7	110,2	134,6				
Characteristic			8,81)	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4				
resistance ²⁾	V _{Rk,s}	[kN]	50 ¹⁾	6,0	11,0	17,4	25,3	47,1	73,5	105,9	137,7	168,3				
			70 ¹⁾	8,4	15,4	24,4	35,4	65,9	102,9	148,3	192,8	235,6				
			4,6 ¹⁾	6,3	15,0	29,9	52,4	133,2	259,6	449,0	665,8	889,6				
Characteristic			8,8 ¹⁾	12,2	30,0	59,8	104,8 ³⁾	266,4 ⁴⁾	519,3	898,0	1331,5	1799,2				
flexural resistance	M ⁰ Rk,s	[Nm]	50 ¹⁾	7,6	18,7	37,4	65,5	166,5	324,5	561,3	832,2	1124,5				
			70 ¹⁾	10,7	26,2	52,3	91,7 ³⁾	233,1	454,4	785,8 1165	1165,1	1574,3				
			4.6 ¹⁾	1,67												
Partial factor		5)	8.8 ¹⁾					1,25								
	γn	1s ⁵⁾	50 ¹⁾					2,38								
			70 ¹⁾					1,56	i							
³⁾ In combinat	tion with		r chann	el K 28/	15 limit											
⁴⁾ In combinat ⁵⁾ In absence	tion with	ancho	r chann	el K 38/												

			JTA							
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48	
Shear load	Vy	[kN]	13,9	13,9	20,6	23,4	31,0	43,7	57,9	
Short-term displacement	δ _{V,y,0}	[mm]	0,6	0,6	0,6	0,6	1,2	1,2	1,2	
Long-term displacement	δ∨,y,∞	[mm]	0,9	0,9	0,9	0,9	1,8	1,8	1,8	

Table C22: Displacements under shear load (JXA)

Anchenchennel			۲	(A
Anchor channel			W38/23	W53/34
Shear load	Vy	[kN]	27,6	57,5
Short-term displacement	δν,y,o	[mm]	9,1	11,1
Long-term displacement	δv,y,∞	[mm]	13,7	16,7
Shear load	Vx	[kN]	9,0	16,3
Short-term displacement	δ _{V,x,0}	[mm]	4,8	3,1
Long-term displacement	δv,x,∞	[mm]	7,2	4,7

Table C23: Displacements under shear load (JTA K)

Anabanahannal					J	ГА		
Anchor channel			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48
Shear load	Vy	[kN]	3,6	7,1	7,9	12,3	21,8	39,7
Short-term displacement	δ∨,y,o	[mm]	0,6	0,6	0,6	0,6	1,2	1,2
Long-term displacement	δv,y,∞	[mm]	0,9	0,9	0,9	0,9	1,8	1,8

JORDAHL anchor channel JTA and JXA

Performance Displacements under shear load

Page 43 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

Anchor channel					JTA			
		W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Steel failure								
Product factors	k 13, k 14		Valu	ues are tak	en from E	N 1992-4:2	2018	
able C25: Characteristi	c resistanc	es under c	combined t	ension and	d shear loa	ad (JXA)		
		JXA						
Anchor channel		W38/23 W53/3		/34				
Steel failure								
Product factors	k13, k14		ure taken f 992-4:2018					
Anchor channel	K28/15	K38/17	K40/25	ГА К50/30	K53/34	K72/48	-	
	K28/15	K38/17	K40/25	K50/30	K53/34	K72/48	-	
								-
Product factor	k 13, k 14		Values a	re taken fro	om EN 19	92-4:2018		
ORDAHL anchor ch	nannel JT	Ā and J	(A					

Page 44 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

									JTA				
nchor	r chanı	nel			K28/15	K38/17	K40/25 W40/22	W40+	K50/30 W50/30	W50+	K53/34 W53/34	W55/42	K72/4 W72/4
teel fa olt	ailure:	Ancho	or, conn	ectio	n betwe	en anch		channel	, local fl	exure o			
		M8			1,0	_ ¹⁾	_ ¹⁾	_ 1)	_ ¹⁾	_ 1)	- ¹⁾	_ 1)	_ 1)
		M10			1,0	1,7	1,9	1,9	1,9	1,9	1,9	_ 1)	_ 1)
		M12			1,9	1,7	1,9 3,0	3,0	2,5	2,5	2,5	_ 1)	_ 1)
	R30	M16			_ 1)	3,2	3,6 7,8	7,8	4,0 6,0	6,0	6,0	6,3	_ 1)
		M20			_ 1)	_ 1)	_ ¹⁾	_ 1)	4,0 9,5	9,5	8,9 10,1	10,3	10,3
		M24			_ 1)	_ ¹⁾	- ¹⁾	_ ¹⁾	_ ¹⁾	_ 1)	_ ¹⁾	14,8	14,8
Ð		M8			0,8	_ 1)	_ ¹⁾	_ 1)	_ ¹⁾	_ 1)	_ 1)	_ 1)	_ 1)
tanc		M10			0,8	1,5	1,5	1,5	1,5	1,5	1,5	_ 1) _ 1)	_ 1)
: resis		M12	N _{Rk,s,fi}		1,3	1,5	1,5 2,6	2,6	2,5	2,5	2,5	_ 1)	_ 1)
eristic	R60	M16	= VRk,s,y,fi	[kN]	_ 1)	2,4	3,6 5,3	5,3	3,5 4,5	4,5	4,5	4,8	_ 1)
Characteristic resistance		M20			_ 1)	_ 1)	_ 1)	_ 1)	3,5 7,1	7,1	6,5 7,5	7,6	7,6
Ч		M24			_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	11,1	11,1
		M8			0,6	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)
		M10			0,6	1,0	1,1	1,1	1,1	1,1	1,1	_ 1)	_ 1)
		M12			0,7	1,0	1,1 1,6	1,6	1,6	1,6	1,6	_ 1)	_ 1)
	R90	M16			_ 1)	1,4	2,0 2,9	2,9	2,5 3,0	3,0	3,0	3,3	_ 1)
		M20			_ 1)	_ 1)	1)	_ 1)	2,5 4,8	4,8	4,2 4,8	4,9	4,9
		M24			_ 1)	_ 1)	_ 1)	_ 1)	_1)	_ 1)	_1)	7,3	7,3

¹⁾ No performance assessed ²⁾ In absence of other national regulations

JORDAHL anchor channel JTA and JXA

Performance

Characteristic resistances under fire exposure

							JTA									
Anchor	chanr	nel					K40/25	18/40-	K50/30	14/20 -	K53/34		K72/48			
					K28/15	K38/17	W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48			
Steel fa polt	ilure: /	Ancho	or, conn	ectio	on betwe	en ancl	nor and o	channel	, local fl	exure o	f channe	el lip, ch	annel			
Ð		M8			0,5	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)			
stanc	M10 M12				0,5	0,8	0,8	0,8	0,8	0,8	0,8	_ 1)	_ 1)			
c resi			N _{Rk,s,fi}		0,5	0,8	0,8 1,1	1,1	1,2	1,2	1,2	_ 1)	_ ¹⁾			
risti	R120	M16	= V _{Rk,s,y,fi}	[kN]	_ 1)	1,0	1,2	1,6	2,1	2,2	2,2	2,6	_ 1)			
ctei		WITO	V RK,S,Y,II			1,0	1,6	1,0	2,3	2,3	2,3	2,0				
arac		M20			_ 1)	_ ¹⁾	_ 1)	_ ¹⁾	2,1	3,6	3,0	3,6	3,6			
Ϋ́							3,6	,	3,5	,	· ·					
C		M24			_ ¹⁾	_ ¹⁾	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	5,4				
	actor		γMs,f	2)	t		II		1,0				<u> </u>			

¹⁾ No performance assessed

²⁾ In absence of other national regulations

JORDAHL anchor channel JTA and JXA

Performance

Characteristic resistances under fire exposure

Page 46 of European Technical Assessment ETA-09/0338 of 28 June 2021

English translation prepared by DIBt

Γ

Fig. 1	mum ax	P.	^C min,fi ¹⁾	er fire expo	osure	Fig.∶	2 ∠ c ^{min} n ²			
							JTA			
Anc	hor cha	nnel		K 28/15	K 38/17	K 40/25 W 40/22 W 40+	K 50/30 W 50/30 W 50+	K 53/34 W53/34	W 55/42	K 72/48 W 72/48
	R30			35	35	35	35	50	50	50
Minimum axis	R60	- a [n	[mm]	35	35	35	35	50	50	50
distance	R90		[]	45	45	45	45	50	50	50
	R120			60	60	60	60	65	70	70
JORDAHL an	chor cl	nannel	JTA a	nd JXA						
Performance Concrete cove		er fire e	exposu	re					Ann	ex C21

Anchor channel		Anchor		Channel bolt					
		Туре	da (t _w) [mm]	Туре	d	Strength grade	Surface		
	W 40/22			JC	M12	8.8			
	VV 40/22		9,0		M16	4.6, 8.8			
	W 40+		10,8	JC	M12	8.8	Electroplated hot-dip galvanized		
JTA -		R			M16	4.6, 8.8			
	W 50/30		9,0	JB	M16, M20	4.6, 8.8			
	W 50+		10,0	JB	M16, M20	4.6, 8.8			
	W 53/34		11,5	JB	M16, M20	8.8			

Table C30: Characteristic resistances under fatigue tension load with n load cycles without static preload ($N_{Ed} = 0$) – Steel failure (Design method I according to EOTA TR 050, October 2018)

Anchor channel		JTA						
		W 40/22	W 40+	W 50/30	W 50+	W 53/34		
	Load cycles n	ΔΝ _{Rk.s.0.n} [kN]						
Characteristic resistances	≤ 10 ⁴	11,7	12,8	16,5	16,5	22,2		
under fatigue	≤ 10 ⁵	6,7	7,7	9,8	9,8	13,2		
load in	≤ 10 ⁶	3,8	4,7	5,8	5,8	7,9		
tension without static preload	≤ 2 · 10 ⁶	3,2	4,0	4,9	4,9	6,7		
	≤ 5 · 10 ⁶	2,6						
	≤ 10 ⁸	1,2	3,3	4,0	4,0	5,5		
	≥ 10 ⁸	- ¹⁾						

¹⁾ No performance assessed

Table C31: Reduction factor for concrete cone and pullout failure without static preload ($N_{Ed} = 0$) (Design method I according to EOTA TR 050, October 2018)

Anchor channel		JTA W	
	Load cycles	$\eta_{k,c,fat} = \eta_{k,p,fat}$	
	n	[-]	
	≤ 10 ⁴	0,736 0,665 0,600	
	≤ 10 ⁵		
Reduction factor for	≤ 10 ⁶		
$\Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot N_{Rk,c} {}^{1)}$	≤ 2 · 10 ⁶	0,582	
$\Delta N_{Rk,p,0,n} = \eta_{p,fat} \cdot N_{Rk,p}^{2}$	≤ 5 · 10 ⁶	0,559	
	≤ 6 · 10 ⁷	0,500	
	≤ 10 ⁸	0,500	
	≥ 10 ⁸	0,500	

¹⁾ Static resistance according to Annex C7 and EOTA TR 047, March 2018 or EN 1992-4:2018 ²⁾ Static resistance according to Annex C7

JORDAHL anchor channel JTA and JXA

Performance Characteristic resistances under fatigue tension load

Table C32: Characteristic limit resistances under fatigue tension load without static preload ($n \rightarrow \infty$, $N_{Ed} = 0$) – Steel failure (Design method II according to EOTA TR 050, October 2018)

Anabarahannal	JTA					
Anchor channel		W 40/22	W 40+	W 50/30	W 50+	W 53/34
Characteristic resistances under fatigue tension load	ΔN _{Rk,s,0,∞} [kN]	— ¹⁾	3,3	4,0	4,0	5,5

¹⁾ No performance assessed

Table C33: Characteristic limit resistances under fatigue tension load without static preload ($n \rightarrow \infty$, $N_{Ed} = 0$) <u>– Concrete cone and pullout failure (Design method II according to EOTA TR 050, October 2018)</u>

Characteristic resistances under fatigue tension load	ηc,fat = ηp,fat [-]		
$\Delta N_{Rk,c;0;\infty} = \eta_{c,fat} \cdot N_{Rk,c}^{-1)}$	0.5		
$\Delta N_{Rk,p;0;\infty} = \eta_{p,fat} \cdot N_{Rk,p}^{-2)}$	0,5		

¹⁾ Static resistance according to Annex C7 and EOTA TR 047, March 2018 or EN 1992-4:2018 ²⁾ Static resistance according to Annex C7

In absence of other national regulations the following partial factors are recommended for design method I and II for all modes of failure (Table C30 to C33) according to EOTA TR 050:Oktober 2018 and EN 1992-4:2018:

$$\begin{split} \gamma_{Ms,fat} &= 1,35 \text{ (steel)} \\ \gamma_{Mc,fat} &= \gamma_{Mp,fat} = 1,50 \text{ (concrete)} \end{split}$$

JORDAHL anchor channel JTA and JXA

Performance Characteristic resistances under fatigue tension load Design method II